Econometric and statistical computing using 0x

Francisco Cribari—-Neto

Departamento de Estatistica, CCEN
Universidade Federal de Pernambuco
Recife/PE, 50740-540, Brazil

Spyros G. Zarkos

National Bank of Greece
86 Eolou str., Athens 102 32, Greece

This paper reviews the matrix programming language Ox from the viewpoint
of an econometrician/statistician. We focus on scientific programming using 0x
and discuss examples of interest to econometricians and statisticians, such as
random number generation, maximum likelihood estimation, and Monte Carlo
simulation.

One of the cultural barriers that separates computer scientists from regular scientists and engineers
is a differing point of view on whether a 30% or 50% loss of speed is worth worrying about. In many
real-time state—of-the art scientific applications, such a loss is catastrophic. The practical scientist
is trying to solve tomorrow’s problem with yesterday’s computer; the computer scientist, we think,
often has it the other way. Press et. al. (1992, p.25)

1. INTRODUCTION

Applied statisticians, econometricians and economists often need to write programs that
implement estimation and testing procedures. With computers powerful and affordable as
they are nowadays, they tend to do that in programming environments rather than in low level
programming languages. The former (e.g., GAUSS, MATLAB, R, S-PLUS) make programming
accessible to the vast majority of researchers, and, in many cases, can be combined with the
latter (e.g., C, FORTRAN) to achieve additional gains in speed.

The existence of pre—packaged routines in statistical software that is otherwise best suited
to perform data analysis (such as in S-PLUS) does not make the need for “statistical comput-
ing” any less urgent. Indeed, many newly developed techniques are not rapidly implemented
into statistical software. If one wishes to use such techniques, he/she would have to program
them. Additionally, several techniques are very computer—intensive, and require efficient pro-
gramming environments/languages (e.g., bootstrap within a Monte Carlo simulation, double
bootstrap, etc.). It would be nearly impossible to perform such computer—intensive tasks
with traditional statistical software. Finally, programming forces one to think harder about
the problem at hand, the estimation and testing methods that he/she will choose to use. Of
course, the most convincing argument may be the following quote from the late John Tukey:
“In a world in which the price of calculation continues to decrease rapidly, but the price of

1

theorem proving continues to hold steady or increase, elementary economics indicates that
we ought to spend a larger fraction of our time on calculation.”

The focus of our paper is on the use of 0x for ‘econometric computing’. That is, we
discuss features of the 0x language that may be of interest to statisticians and econometri-
cians, and exemplify their use through examples. Readers interested in conventional reviews
of 0x, including the language structure, its syntax, and its advantages and disadvantages,
are referred to Cribari-Neto (1997), Keng & Orzag (1997), Kusters & Steffen (1996) and
Podivinsky (1999).!

2. A BRIEF OVERVIEW OF 0x

Ox is a matrix programming language with object—oriented support developed by Jur-
gen Doornik, a Dutch graduate student (at the time) at Nuffield College, Oxford. The
development of Ox started in April 1994. Doornik’s primary goal was to develop a matrix
programming language for the simulations he wished to perform for his doctoral dissertation.
The very first preliminary version of 0x dates back to November 1994. In the summer of
1995, two other econometricians at Nuffield College started using 0x for their research: Neil
Shephard and Richard Spady. From that point on, the development of 0x became a serious
affair. The current 0x version is numbered 2.20.

Ox binaries are available for Windows and several flavors of UNIX (including Linux) and
can be downloaded from http://www.nuff.ox.ac.uk/Users/Doornik/, which is the main
0x web page. All versions are free for educational purposes and academic research, with the
exception of the ‘Professional Windows version’. This commercial version comes with a nice
interface for graphics known as GiveWin (available for purchase from Timberlake Consultants,
http://www.timberlake.co.uk).

The free 0x versions can be launched from the command line in a console/terminal win-
dow, which explains why they are also known as ‘console versions’. Doornik also distributes
freely a powerful text editor for Windows: 0xEdit (see also the 0xEdit web page, which is
currently at http://www.oxedit.com). It can be used as a front—end not only to 0x (the
console version) but also to other programs and languages, such as C, C++, TEX, IATEX, etc.

The 0x syntax is very similar to that of C, C++ and Java. In fact, its similarity to C
(at least as far as syntax goes) is one of its major advantages.? One characteristic similarity
with C/C++ is in the indexing, which starts at zero, and not at one. This means that the first
element of a matrix, say A, is accessed as A[0] [0] instead of as A[1] [1]. A key difference
between 0x and languages such as C, C++ and Java is that matrix is a basic type in Ox.
Also, when programming in Ox one needs to declare the variables that will be used in the
program (as is the case in C/C++), but unlike in C/C++, one does not have to specify the

1A detailed comparison involving GAUSS, Macsyma, Maple, Mathematica, MATLAB, MuPAD, 0-Matrix, Ox,

R-Lab, Scilab, and S-PLUS can be found at http://www.scientificweb.de/ncrunch/ncrunch.pdf (“Com-

parison of mathematical programs for data analysis” by Stefan Steinhaus). 0x is the winner when it comes to
speed.

Other important advantages of Ox are the fact that it is fast, free, can be easily linked to C, Fortran,

etc., and can read and write data in several different formats (ASCII, Gauss, Excel, Stata, Lotus, PcGive,
etc.).

type of the variables that are declared. 0x’s most impressive feature is that it comes with a
comprehensive mathematical and statistical function library. A number of useful functions
and methods are implemented into the language, which makes it very useful for scientific
programming.

0x comes with a comprehensive set of help files in HTML form. The documentation of
the language can be also found in Doornik (1999). A good introduction to 0x is Doornik,
Draisma & Ooms (1998).

3. A FEW SIMPLE ILLUSTRATIONS

Our first example is a very simple one, and intends to show the similarity between the
0x and C syntaxes. We wish to develop a program that produces a small table converting
temperatures in Fahrenheit to Celsius (from OF to 300F in steps of 20F). The source of this
example is Kerninghan & Ritchie (1988). The C code can be written as follows.

/***

* PROGRAM: celsius.c

*

* USAGE: To generate a conversion table of temperatures (from

* Fahrenheit to Celsius). Based on an example in the

* Kernighan & Ritchie’s book.

*

ok ok ook ok Kok ok ok ok Kok ok o o KK ok ok o o Kk sk ok ok sk o ok sk ok ok sk ok ok Kk ok ok ok ok ok koK sk ok ok ok ok k /

#include <stdio.h>

int main(void)

{
int fahr;
printf("\nConversion table (F to C)\n\n");
printf("\t%43s %bs\n", "F", "C");
/* Loop over temperatures */
for (fahr = 0; fahr <= 300; fahr += 20)
{
printf("\t%3d %6.1f\n", fahr, 5.0%(fahr-32)/9.0);
}
printf("\n");
return O;
}

The output produced by compiled C code using the gcc compiler (Stallman, 1999) under the
Linux operating system (MacKinnon, 1999) is:

[cribariQedgeworth c]$ gcc -02 -o celsius celsius.c
[cribariQedgeworth c]$./celsius

Conversion table (F to C)

0 -17.8
20 -6.7
40 4.4
60 15.6
80 26.7

100 37.8
120 48.9
140 60.0
160 71.1
180 82.2
200 93.3
220 104.4
240 115.6
260 126.7
280 137.8
300 148.9

The next step is to write the same program in 0x code. The 0x transcription of the celcius.c
program follows:

/3 ok ok KoK o o o KKK oK o o o K KK oK 3 o o K KK K oK o o K KK oK oK o o o o o KoK ok o o o oK KK ok ok ok o
* PROGRAM: celsius.ox

*

* USAGE: To generate a conversion table of temperatures (from
* Fahrenheit to Celsius). Based on an example in the

* Kernighan & Ritchie’s book.

Ko o o o KKK oK oK o o KKK oK o o K KK oK o o o K KKK ok ok o o o K K KoK ok ok o o K KKK oK o o o ok K KK ok ok ok ok kK /
#include <oxstd.h>
main()

decl fahr;

print("\nConversion table (F to C)\n\n");
print("\t F C\n");

// Loop over temperatures
for (fahr = 0; fahr <= 300; fahr += 20)
{

print("\t", "%3d", fahr);
print(" ",o"%6.1f", 5.0%(fahr-32)/9.0, "\n");

print("\n");

The 0x output is:
[cribari@edgeworth ox]$ oxl celsius

0x version 2.20 (Linux) (C) J.A. Doornik, 1994-2000

4

Conversion table (F to C)

F C

0 -17.8
20 -6.7
40 4.4
60 15.6
80 26.7
100 37.8
120 48.9
140 60.0
160 71.1
180 82.2
200 93.3
220 104.4
240 115.6
260 126.7
280 137.8
300 148.9

The two programs above show that the 0x and C syntaxes are indeed very similar. Note that
Ox accepts C style comments (/* ... */), and also C++ like comments to the end of
the line (//).> We also note that, unlike C, Ox accepts nested comments.

As a second illustration of the use of 0x in econometrics and statistics, we develop a simple
program that first simulates a large number of coin tosses, and then counts the frequency
(percentage) of tails. The code which is an Ox translation, with a smaller total number of
runs, of the C code given in Cribari-Neto (1999), thus illustrates Kolmogorov’s Law of Large
Numbers. We begin by writing a loop—based version of the coin tossing experiment.

/334 sk ok ok ok ok ke ok ok ok ok e ok ok e ok K o ok 3k ok sk ok 3 ok ko ok ok s ok ok o ok ok ke ok ok s ok ok ok Kk o Kk ok ok s ok 3k o ok o ok ok ok ok ok

* PROGRAM: coin_loop.ox

*

* USE: Simulates a large number of coin tosses and prints
* the percentage of tails.

*

* PURPOSE: The program illustrates the first version of the

* law of large numbers which dates back to James

* Bernoulli.

ek ok Rk Rk R Rk ok R Rk R Rk ok ok ok sk ok sk ok ok o s ok ok sk ok koK sk sk kK K kK Kk kol sk ok sk ok sk sk ok ok ok /
#include <oxstd.h>

/* maximum number of coin tosses */
const decl COIN_MAX=1000000;

main()

{

decl j, dExecTime, temp, result, tail, s;

3 0x also borrows from Java; the println function, for instance, comes from the Java programming
language.

// Start the clock (to time the execution of the program).
dExecTime = timer();

// Choose the random number generator.
ranseed ("GM") ;

// Main loop:
for (j = 10; j <= COIN_MAX; j *= 10)
{

tail = 0;

for (s = 0; s < j; s++)

{

temp = ranu(i,1);
tail = temp > 0.5 7 tail : tail+l;

result = 100.0*tail/j;

print("Percentage of tails from ", j, " tosses: ",
"%8.2f", result, "\n");

}

print ("\nEXECUTION TIME: ", timespan(dExecTime) , "\n");

Next, we vectorize the code above for speed. The motivation is obvious: vectorization usually
leads to efficiency gains, unless of course one runs into memory problems. It is noteworthy
that one of the main differences between a matrix programming language and a low level
language such as C and C++ is that programs should exploit vector and matrix operations
when writen for execution in a matrix—oriented language, such as 0x. The vectorized code
for the example at hand is:

/**

* PROGRAM: coin_vec.ox

*

* USE: Simulates a large number of coin tosses and prints
* the percentage of tails.

*

* PURPOSE: The program illustrates the first version of the

* law of large numbers which dates back to James

* Bernoulli.

KK o o o o KK KoK oK o o KKK oK o o o KK K ok o o o KKK oK oK o o o KKK oK oK o o o o o K Kok ok ok o o K KK ok ok ok o Kk
#include <oxstd.h>

/* maximum number of coin tosses */
const decl COIN_MAX=1000000;

main()
{

decl j, dExecTime, temp, tail;

// Start the clock (to time the execution of the program).
dExecTime = timer();

// Choose the random number generator.
ranseed (""GM") ;

// Coin tossing:
for (j = 10; j <= COIN_MAX; j *= 10)

{
temp = ranu(l, j);
tail = sumr(temp .< 0.5)*(100.0/j);
print("Percentage of tails from ", j, " tosses: ",
"%8.2f", double(tail), "\n");
}

print ("\nEXECUTION TIME: ", timespan(dExecTime) ,"\n");

The output of the loop-based program is:
[cribari@edgeworth programs]$ oxl coin_loop

0x version 2.20 (Linux) (C) J.A. Doornik, 1994-2000

Percentage of tails from 10 tosses: 40.00
Percentage of tails from 100 tosses: 53.00
Percentage of tails from 1000 tosses: 49.10
Percentage of tails from 10000 tosses: 49.69
Percentage of tails from 100000 tosses: 49.83
Percentage of tails from 1000000 tosses: 49.99

EXECUTION TIME: 3.65

whereas the vectorized code generates the following output:
[cribari@edgeworth programs]$ oxl coin_vec

0x version 2.20 (Linux) (C) J.A. Doormnik, 1994-2000

Percentage of tails from 10 tosses: 40.00
Percentage of tails from 100 tosses: 53.00
Percentage of tails from 1000 tosses: 49.10
Percentage of tails from 10000 tosses: 49.69
Percentage of tails from 100000 tosses: 49.83
Percentage of tails from 1000000 tosses: 49.99

EXECUTION TIME: 0.28

Note that the empirical frequency of tails approaches 1/2, the population mean, as predicted
by the Law of Large Numbers. As far as efficiency goes, we see that vectorization leads to a
sizeable improvement in efficiency. The loop—based program yields an execution time which
is 13 times greater than that of its vectorized version on a Pentium III 600 MHz computer
with 256 MB RAM running on Linux.*

4 The operating system was Mandrake Linux 7.1 running on kernel 2.2.15.

7

Some languages, like C, operate faster on rows than on columns. The same logic applies
to 0x. To illustrate the claim, we modify the vectorized code so that the random draws are
stored in a column vector (they were previously stored in a row vector). To that end, one
only needs to change two lines of code:

for (j = 10; j <= COIN_MAX; j *= 10)

{
temp = ranu(j, 1); // 1st change
tail = sumc(temp .< 0.5)*(100.0/j); // 2nd change
print("Percentage of tails from ", j, " tosses: ",
"%8.2f", double(tail), "\n");
}

This new vectorized code now runs in 0.47 second. That is, we see a speed penalty of 40%
when we transpose the code so that we work with a large column vector instead of working
with a large row vector.

4. ECONOMETRIC APPLICATIONS

Maximum likelihood estimates oftentimes need to be computed using a nonlinear op-
timization scheme. In order to illustrate how that can be done using 0x, we consider the
maximum likelihood estimation of the number of degrees—of-freedom of a Student ¢ distri-
bution. Maximization is performed using a quasi-Newton method (known as the ‘BFGS’
method) with numerical gradient, i.e., without specifying the score function. (Note that this
estimator is substantially biased in small samples.) It is noteworthy that 0x has routines for
other optimization methods as well, such as the Newton—Raphson and the BHHH methods.
An advantage of the BFGS method is that it allows users to maximize likelihoods without
having to specify a score function. See Press et al. (1992, Chapter 10) for details on the BFGS
and other nonlinear optimization methods. See also Mittelhammer, Judge & Miller (2000,
§8.13), who on page 199 write that “[tjhe BFGS algorithm is generally regarded as the best
performing method.” The example below uses a random sample of size 50, the true value of
the parameter is 3, and the initial value of the optimization scheme is 2. (We have neglected
a constant in the log-likelihood function.)

/***

* PROGRAM: t.ox
*

* USAGE: Maximum likelihood estimation of the number of
* degrees of freedom of a Student t distribution.
Sk R R R R R R R R K KR KK R R K K KKK K K ok B ok s s ok s ok s ok ok ok Kok oK ok K K K KK K K K Kk ok ok ok /

#include <oxstd.h>
#include <oxprob.h>

#import <maximize>

const decl N = 50;
static decl s_vx;

fLogLik(const vP, const adFunc, const avScore, const amHess)

8

decl vone = ones(1,N);

decl nu = vP[0];

adFunc[0] = double(N*loggamma((nu+1)/2)
- (N/2)#log(nu) - N¥loggamma(nu/2)
- ((nu+1)/2)*(vone*log(1l
+ (s_vx .~ 2)/nu)));

if (isnan(adFunc[0]) || isdotinf(adFunc[0]))
return 0;

else
return 1; // 1 indicates success

}

main()
{

decl vp, dfunc, dnu, ir;
ranseed ("GM") ;

vp = 2.0;

dnu = 3.0;

s_vx = rant(N,1,3);

ir = MaxBFGS(fLogLik, &vp, &dfunc, O, TRUE);

print ("\nCONVERGENCE: ",
MaxConvergenceMsg(ir));

print ("\nMaximized log-likelihood: ", "%7.3f", dfunc);
print ("\nTrue value of nu: ", "%6.3f", dnu);
print ("\nML estimate of nu: ", "%6.3f", double(vp));

print ("\nSample size: ", njed", N);
print ("\n");

Here is the 0x output:
[cribari@feller ox]$ oxl t

0x version 2.20 (Linux) (C) J.A. Doornik, 1994-2000

CONVERGENCE : Strong convergence
Maximized log-likelihood: -72.813
True value of nu: 3.000
ML estimate of nu: 1.566
Sample size: 50

The maximum likelihood estimate of v, whose true value is 3, is 7 = 1.566. This example
shows that nonlinear maximization of functions can be done with ease using 0x. Of course,
one can estimate more complex models in a similar fashion. For example, the parameters of
a nonlinear regression model can be estimated by setting up a log-likelihood function, and
maximizing it with a MaxBFGS call. It is important to note, however, that 0x does not come

9

with routines for performing constrained maximization. The inclusion of such functions in
0x would be a great addition to the language.

A number of people have developed add-on packages for 0x. These handle dynamic
panel data (DPD), ARFIMA models, conditionally heteroskedastic models, stochastic volatil-
ity models, state space forms. There is, moreover, 0x code for quantile regressions, and in
particular, £; (i.e., least absolute deviations) regressions. The code corresponds to the algo-
rithm described in Portnoy & Koenker (1997) and is available at Roger Koenker’s web page
(http://www.econ.uiuc.edu/roger/research/rqn/rqn.html).

We will consider in more detail the GORCH 1.1 package recently developed by Sébastien
Laurent and Jean—Philippe Peters, and dedicated to the estimation of ARCH, GARCH mod-
els. The GARCH add-on package comes in two versions, the ‘Full Version’ which requires
a registered version of 0x Professional 2.20, since it is launched from 0xPack and makes use
of the GiveWin interface, and and the ‘Light Version’ which only requires the free (‘con-
sole’) version of Ox. It relies on 0x’s object—oriented programming capabilities, being a
derived class of 0x’s Modelbase type of class. The package is available for download at
http://www.egss.ulg.ac.be/garch. We borrow the example program (GarchEstim.ox) in
order to illustrate the use of the GARCH code (as with everything else, in the context of
the console, i.e. free, version of 0x). The GARCH object (that is created with the source
code provided with this add—on package) allows for the estimation of nine models (ARCH,
GARCH, IGARCH, FIGARCH, GJR, EGARCH, APARCH, FIEGARCH and FTAPARCH)
under Gaussian, Student—t and generalized error distributions.

#include <oxstd.h>

#include <oxfloat.h>

#import <maximize>

#import <modelbase>

#include <oxdraw.h>

#import <packages/garch/garch>

main ()

{
decl garchobj;

garchobj = new Garch();

garchobj.Load("/Data/DJIA.x1s");
garchobj.Info();

garchobj.Select (Y_VAR, {"RET",0,0 });
garchobj.SetSelSample(-1, 1, -1, 1);

garchobj.CSTS(1,1); // cst in Mean (1 or 0), cst in Variance (1 or 0)
garchobj.DISTRI(0) ; // 0 for Gauss, 1 for Student, 2 for GED
garchobj.ARMA(0,0) ; // AR order (p), MA order (q).
garchobj.GARCH(1,1); // p order, q order

garchobj .FIGARCH(0,0,1000) ; // Arg.1 : 1 if Fractional Integration wanted.

// Arg.2 : 0 -> BBM, 1 -> Chung

// Arg.3 : if BBM, Truncation order
// Estimation technique
garchobj.MLE(0) ; // 0 : both, 1 : MLE, 2 : QMLE

10

// These
garchobj
garchobj
garchobj
garchobj
garchobj

models are not used but

.ARFIMA (0);
.IGARCH(0) ;
.EGARCH(0) ;
.GJR(0);

.APARCH(0) ;

// Test statistics

garchobj .BPLAGS (<5;10;20>) ;
garchobj.ARCHLAGS (<2;5>) ;

garchobj.
garchobj . TESTSONLY (0) ;

ITER(O);

// 1

//
//
//
//

//
//
//
//

are
if
if
if
if
if

e

Lags
Lags

Iter.

((1)

provided for, in the GARCH object
Arfima wanted, O elsewhere
IGARCH wanted, 0 elsewhere
EGARCH wanted, O elsewhere

GJR wanted, 0 elsewhere

APARCH wanted, O elsewhere

for the Box-Pierce (-statistics.

for Engle’s LM ARCH test.

before printing results, ‘O’ for no results
for tests of raw Y series prior to estimation)

// Default values used in estimation part

garchobj.DoEstimation(<>) ;

// Storing the output

// garchobj.STORE(0,0,0,"01",1);

// Arg.1,2,3 :
// Arg.4 :
// Arg.5 :

delete garchobj;

We have run the above code to obtain the MLE and QMLE results of an ARMA(0,0) model
in the mean equation and GARCH(1,1) model in the variance equation, assuming Gaussian
distributed errors. Some portmanteau tests, such as the Box—Pierce Q-statistic and the LM
ARCH test, the Jarque—Bera normality test etc, were also calculated for the daily observations

1 : stored in a new

if 1 -> stored. (Res-SqRes-CondV)
Suffix. The name of the saved series will be "Res_ARG4".
.in7 file. O : stored in DB.

on the Dow Jones Industrial Average (Jan.1982 - Dec.1999, a total of 4,551 observations).
The output follows.

0x version 2.20 (Linux) (C) J.A. Doornik, 1994-2000
Garch package version 1.10, object created on 8-11-2000

-—-— Database information ----
3 variables, 4551 observations

name
DJIA
LDJIA
RET

sample period
1 (1) 4551 (1)
1 (1) 4651 (1)
2 (1) 4551 (1)

SPECIFICATIONS

Mean Equation :
No regressor in the
Variance Equation :
No regressor in the

mean
GARCH (1, 1) model.
variance

ARMA (0, 0) model.

776
6.6
-25.

min mean max stddev
.92 3677.7 11497 2667.8
553 7.9698 9.3499 0.69265
632 0.056419 9.6662 1.0436

The distribution is a Gauss distribution.

11

Strong convergence using numerical derivatives
Log-likelihood = -6003.03
Please wait : Computing the Std Errors ...

Maximum Likelihood Estimation
Coefficient Std.Error t-value t-prob

Cst (M) 0.072202 0.01228 5.878 0.0000
Cst (M) 0.019238 0.00422 4.561 0.0000
GARCH(Betal) 0.905243 0.01027 88.12 0.0000
ARCH(Alphal) 0.078936 0.00779 10.13 0.0000

Quasi Maximum Likelihood Estimation
Coefficient Std.Error t-value t-prob

Cst (M) 0.072202 0.01414 5.106 0.0000
Cst (V) 0.019238 0.01133 1.699 0.0895
GARCH(Betal) 0.905243 0.03990 22.69 0.0000
ARCH(Alphal) 0.078936 0.03733 2.114 0.0345

Estimated Parameters Vector :
0.072202; 0.019238; 0.905243; 0.078936

No. Observations : 4550

No. Parameters : 4

Fokokokokokokok ok ok ok

% TESTS **
sokokokokokokokokok ok

Statistic t-Test P-Value

Skewness -0.78574 21.645 6.8068e-104
Excess Kurtosis 8.8821 122.36 0.0000
Jarque-Bera 15425. 15425. 0.0000

Information Criterium (minimize)

Akaike 2.640453 Shibata 2.640451
Schwarz 2.646099 Hannan-Quinn 2.642441
BOX-PIERCE :

Value
Mean of standardized residuals -0.02008

Mean of squared standardized residuals 1.00049
HO : No serial correlation ==> Accept HO when prob. is High [Q < Chisq(lag)]

Box-Pierce (-statistics on residuals
Q(5) = 20.9383 [0.000832091]

Q(10) 24.734 [0.00587309 1]
Q(20) = 37.8861 [0.00914358]

Box-Pierce Q-statistics on squared residuals
--> P-values adjusted by 2 degree(s) of freedom
Q(5) = 2.15661 [0.540545 1]

Q(10) = 5.75967 [0.674132]

Q(20) = 9.2042 [0.954823 1]
ARCH 1-2 test: F(2,4543)=0.37997 [0.6839]
ARCH 1-5 test: F(5,4537)=0.43731 [0.8227]

12

Diagnostic test based on the news impact curve (EGARCH vs. GARCH)

Test Prob
Sign Bias t-Test 0.90343 0.36630
Negative Size Bias t-Test 3.90241 0.00010
Positive Size Bias t-Test 1.77080 0.07659

Joint Test for the Three Effects 23.37172 0.00003

Time lapsed : 5.68 seconds (or 0.0946667 minutes).

The stochastic volatility package (SvPack), written by Neil Shephard, is essentially a
dynamic link library for 0x of C code that deals with the implementation of likelihood infer-
ence in volatility models. The fact that it is written in C guarantees optimal speed, whereas
the linking to Ox definitely improves usability. It requires the Ox state space package (Ssf-
Pack), which provides for Kalman filtering, smoothing and simulation smoothing algorithms
of Gaussian multivariate state space forms (see Koopman, Shephard & Doornik, 1999; Ooms,
1999, and also http://www.ssfpack.com), as well as ARMS (Adaptive Rejection Metropolis
Sampling), an 0x front—end for C code for adaptive rejection sampling algorithms (i.e., rou-
tines for efficient sampling from complicated univariate densities) developed and documented
by Michael Pitt.

The Arfima package is a set of Ox functions that create a class (an ARFIMA object)
for the estimation and testing of AR(F)IMA models (Beran, 1994). The models can be esti-
mated via exact maximum likelihood, modified profile likelihood and nonlinear least squares.
ArfimaSim is an additional simulation class included in the Arfima package that provides
the means for Monte Carlo experiments based on the Arfima class.

The Dynamic Panel Data package, DPD, like the Arfima and G@ARCH packages, is a nice
example of object—oriented 0x programming. They are derived classes written in 0x. DPD,
which is entirely written in 0x, implements dynamic panel data models, as well as some static
ones, and can handle unbalanced panels. Monte Carlo experimentation is possible with the
simulation class DPSSim, included in this 0x add—on package.

5. GRAPHICS

0x has a number of commands for producing publication quality graphics. This is, how-
ever, one of the areas where more progress is expected. The graphics capabilities of the
console version of 0x are not comparable to those of, say, GAUSS, MATLAB, R or S-PLUS. It
is important to note, however, that the professional version of 0x comes with an impressive
interface for graphics: GiveWin. It allows users, for example, to modify a graph with a few
clicks of the mouse. The interface allows users to edit all graphs on the screen, manipu-
late areas, add Greek letters, add labels, change fonts, etc. Therefore, users who intend to
make extensive use of the plotting capabilities of the language to produce publication quality
graphics should consider using the professional version of 0x. An alternative strategy, which
is the one we tend to follow, is to use 0x for programming, save the results to a file, read the
results file into R, which is also free, and then produce publication quality plots from there.

It should be noted that the current Ox version (2.20) does not include functions that

13

produce 3D graphics. A way to circumvent the problem is to use GnuDraw, an Ox package
written by Charles Bos (http://www2.tinbergen.nl/"cbos/). GnuDraw allows users to
create gnuplot (http://www.gnuplot.org) graphics from 0x, extending the possibilities
offered by 0xDraw, with four new commands, namely: DrawBivDensity, DrawXYZ, DrawT,
DrawTMatrix. The interface is modeled on the 0x drawing library (oxdraw.h), so that the
functions have the same syntax, making it easier to switch between the two. Likewise,
the documentation (see gnudraw.htm) is also based on Jurgen Doornik’s oxdraw.htm. The
gnuplot output files are plain ASCITI files, and hence can be easily edited. That way one does
not have to re-run an Ox program in order to make changes, add labels or add additional
features to a graph. The two examples that follow use the gnuplot/0Ox interface.

Our first example is based on a simple Monte Carlo experiment that simulates a simple
normal linear regression model. The program, quite useful for teaching, is borrowed from
Cribari-Neto & Zarkos (1999) and attempts to replicate the simulation results on pages 219
223 of the Griffiths, Hill and Judge textbook (Griffiths, Hill & Judge, 1993). The goal is to
use the OLS estimates by = 7.3832, by = 0.2323 and 52 = 46.853 (given on page 219) as the
true parameter values and then perform the Monte Carlo. A histogram of the different values
of bo, replicating the figure on page 222 of the book, is produced, as well as the estimated
density function of realized values of bs.

#include <oxstd.h>
#include <oxprob.h>
#include "gnudraw.h"

main()
{

// Declaration of variables used in the program:

decl et, nrepls, x1, X, obs, beta, sigma2, nvar, P, systematic,
Y, i, bols, b2;

et = timer(); // Start the timer
nrepls = 1000; // Number of Monte Carlo replications
// Specifying the model

x1 = < 25.83, 34.31, 42.5, 46.75, 48.29, 48.77, 49.65, 51.94,
54.33, 54.87, 56.46, 58.83, 59.13, 60.73, 61.12, 63.1,
65.96, 66.4, 70.42, 70.48, 71.98, 72, 72.23, 72.23,
73.44, 74.25, 74.77, 76.33, 81.02, 81.85, 82.56, 83.33,
83.4, 91.81, 91.81, 92.96, 95.17, 101.4, 114.13, 115.46 >’;

beta = < 7.3832, 0.2323 >’;
sigma2 = 46.852;

X = 17x1;

obs = rows(X);

P = invertsym(X’*X)#*X’;
systematic = X*beta;

bols=zeros (rows(beta), nrepls);

14

for (i=0; i<nrepls; ++i)

{

Y=systematict+sqrt(sigma2) .* rann(obs,1);
bols[][i] = P*Y;

b2 = bols[1]1[]; print("\nThe mean of b2 is ", meanr(b2), "\n");
// Drawing histogram and density estimate:

DrawTitle(0, "Histogram of b2, the slope coefficient");
DrawDensity(0, b2, "", FALSE, TRUE, TRUE);

DrawTitle(1, "Density of b2, the slope coefficient");
DrawDensity(1, b2, "", TRUE, FALSE, FALSE);

SaveDrawWindow ("MC_example.eps") ;

"\n\nDate: ", date());

"\nOx version: ", oxversion());

ShowDrawWindow() ;
CloseDrawWindow() ;

print(

print("\nTime: ", time());
print(

print("\nExecution time:

, timespan(et)

Il\nll) ;

Histogram of b2, the slope coefficient

which produces the plot below (Figure 1). The execution time was 0.03 second.
runs a 1,000 replication Monte Carlo experiment in virtually no time.

That is, it

3 N(s=0.0551) ------- ———

5 N

4+ h

3 -

2

1L) =

0 i | 1 1 1

0.05 0.1 0.2 0.25 0.35 0.4

Density of b2, the slope coefficient

8 —

7 -

6 -

5 -

4

3 -

2

1F

0 L 1 1 1 1 1 1 J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Figure 1. Histogram and density plot from the Monte Carlo example.

15

The second example deals with producing a 3D plot. A bivariate sample from a standard
bivariate normal distribution with correlation coefficient p = 0.8 is obtained, and then an es-
timate of the underlying bivariate distribution is computed and drawn. The density estimate
is produced using a Gaussian kernel. The resulting plot is presented in Figure 2.

#include <oxstd.h>
#include <oxprob.h>
#include "gnudraw.h"

rndmn (const m, const c, const n)
{
/* This is the procedure for multivariate draws */
/*
This proc generates a matrix with multivariate normal rows.
Inputs: m = mean row vector for variates
setdiagonal(r * ones(np, np), ones(np, 1)) =
covariance matrix for variates
n = number of output rows (no. of variates)
Output: x = matrix of multinormal(m,c) variates
*/

return m + rann(n, columns(m)) * choleski(c)’;

sumall (const x)

{
/* This procedure sums all elements of a matrix */
return (sumr(sumc(x)));

main ()

decl n, m, r, ndraws, draw, empirical_r, series;

/* We use mu = 0, variance = 1 */
n = 4; /* number of samples */

m = zeros(1l, n); /* mean */

r = 0.8; /* theoretical correlation coefficient */
ndraws = 1000; /* number of draws for each sample */

draw = rndmn(m, setdiagonal(r * ones(n, n), ones(n, 1)), ndraws);

empirical_r = correlation(draw);

/* We drew n samples, we’re only plotting 2! */
series = draw[]1[0]’ \ draw[][1]’ ;

DrawTitle (0, "Density of Bivariate Normal with correlation coefficient = .8");
DrawBivDensity(0, series, "", TRUE, FALSE, FALSE);

SaveDrawWindow("multivar_draw.eps") ;

ShowDrawWindow () ;

CloseDrawWindow() ;

16

which produces the plot displayed in Figure 2. This example shows that GnuDraw can be
used in conjunction with 0x to enhance the graphical capabilities of the 0x language.

Density of Bivariate Normal with correlation coefficient = .8

0.25
0.2
0.15
0.1

0.05

Figure 2. A 3D plot produced using the gnuplot interface.

6. RANDOM NUMBER GENERATION

Econometricians and statisticians often need to generate random numbers, be from the
standard uniform distribution or from some other distribution. Bootstrap methods, Monte
Carlo simulation, and other methods and techniques commonly used require random numbers
to be obtained, and hence random number generation should be taken seriously. And indeed
it is in 0x. The language comes with three different uniform random number generators,
namely:

A. Modified Park & Miller generator: Its period is (approximately) 232 — 1, and it requires
one seed.

B. George Marsaglia’s multiply-with—carry generator: Its period is (approximately) 260,

and it requires two seeds.

2113 and

C. Pierre L’Ecuyer’s linear shift register generator: Its period is (approximately)
it requires four seeds.
All three RNGs pass stringent randomness tests, such as George Marsaglia’s DieHard tests.5

The source code in C of all three RNGs is given in Doornik (1999, Appendix A5). 0x also

5 The George Marsaglia random number generator is also implemented in R.

17

comes with random number generators for non—uniform distributions. For example, unlike
GAUSS, MATLAB, R and S-PLUS, the 0x language brings a random generator for the von Mises
distribution, which is very useful for modeling circular data (e.g., Fisher, 1993). However,
it would be nice if 0x could also come with built—in functions to numerically evaluate the
probability density function, the distribution function, and the quantiles of all distributions
for which it generates random numbers.

7. CONCLUDING REMARKS

This paper presented a ‘helicopter tour’ of the language from the viewpoint of users
interested in econometric and statistical computing. 0x is a matrix programming language
which is freely distributed for academic use. It is fast, comes with an impressive collection of
numerical and statistical routines, and has the potential to become an important tool in every
econometrician’s toolbox. Additional 0x packages that handle the estimation of ARFIMA
and other models are available for download, as is an interface between 0x and gnuplot. The
language syntax closely resembles that of C, the language also borrowing from C++ and Java.
Ox is an excellent teaching tool, since it is distributed at no cost for academic use, and is
available for a number of different platforms.

ACKNOWLEDGEMENTS

Comments by Jurgen Doornik and Alvaro Novo are gratefully acknowledged. The first author
acknowledges financial support from CNPq.

REFERENCES

[1] Beran, J. (1994). Statistics for Long-Memory Processes. New York: Chapman and Hall.

[2] Cribari-Neto, F. (1997). Econometric programming environments: GAUSS, Ox and S-PLUS.
Journal of Applied Econometrics, 12, 77-89.

[3] Cribari-Neto, F. (1999). C for econometricians. Computational Economics, 14, 135-149.

[4] Cribari-Neto, F. & Zarkos, S.G. (1999). R: yet another econometric programming environment.
Journal of Applied Econometrics, 14, 319-329.

[5] Doornik, J.A. (1999). Object-oriented Matriz Programming Using Oz, 3rd ed. London: Timber-
lake Consultants.

[6] Doornik, J.A., Draisma, G. & Ooms, M. (1998). Introduction to Oz. London: Timberlake
Consultants.

[7] Fisher, N.I. (1992). Statistical Analysis of Circular Data. New York: Cambridge University
Press.

[8] Griffiths, W.E., Hill, R.C. and Judge, G.G. (1993). Learning and Practicing Econometrics. New
York: Wiley.

[9] Keng, T. & Orzag, J.M. (1997). Ox: an object—oriented matrix language. The Economic Journal,
January, 256-259.

[10] Kerninghan, B.W. & Ritchie, D.M. (1988). The C Programming Language, 2nd ed. Englewood
Cliffs: Prentice Hall.
[11] Koopman, S.J., Shephard, N. & Doornik, J.A. (1999). Statistical algorithms for models in state

space form using SsfPack 2.2 (with discussion), Econometrics Journal, 2, 113-166.

18

[12] Kusters, U. & Steffen, J.P. (1996). Matrix programming languages for statistical computing: a
detailed comparison of GAUSS, MATLAB, and Ox. Discussion Paper No. 75, Catholic University
of Eichstatt.

[13] Laurent, S. & Peters, J.P. (2000). GQRCH 1.1: an Ox package for estimating various ARCH
models. Working Paper, University of Liege.

[14] MacKinnon, J. (1999). The Linux operating system: Debian GNU/Linux. Journal of Applied
Econometrics, 14, 443-452.

[15] Mittelhammer, R.C., Judge, G.G. & Miller, D.J. (2000). Econometric Foundations. New York:
Cambridge University Press.

[16] Ooms, M. (1999). Review of SsfPack 2.2: statistical algorithms for models in state space. Econo-
metrics Journal, 2, 161-166.

[17] Podivinsky, J.M. (1999). Ox 2.10: beast of burden or object of desire? Journal of Economic
Surveys, 13, 491-502.

[18] Portnoy, S. & Koenker, R. (1997). The Gaussian hare and the Laplacean tortoise: computability
of squared—error vs. absolute error. Statistical Science, 12, 279-300.

[19] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1992). Numerical Recipes in
C: The Art of Scientific Computing, 2nd ed. New York: Cambridge University Press.

[20] Stallman, R.M. (1999). Using and Porting the GNU Compiler Collection. Boston: The Free
Software Foundation.

19

