

Universidade Federal do Pará (UFPA) Instituto de Ciências Exatas e Naturais (ICEN) Mestrado em Matemática e Estatística (PPGME)

	Disciplina: Probabilidade Prova n^o : 1 Professor: Héliton Ribeiro Tavares
	Nome: Matrícula:

	1 2 3 4 5 6 7 8 ii) Descreva detalhadamente cada passo do desenvolvimento iii) A prova é estritamente individual e sem consulta ***********************************
1)	Sejam A_1, A_2, \dots, A_n e B_1, B_2, \dots, B_n eventos em $(\Omega, \mathcal{F}, \mathcal{P})$. Para $j = 1, \dots, n$, suponha que B_j seja independente de $\bigcap_{i=1}^n A_i$, e que os B'_js sejam disjuntos 2 a 2. Mostre que $\bigcup_{j=1}^n B_j$ e $\bigcap_{i=1}^n A_i$ são independentes.
2)	São escritas cartas a n destinatários diferentes e há n envelopes com os respectivos endereços. Porém, as cartas são colocadas ao acaso em cada um desses envelopes.
	a) Qual é a probabilidade da k-ésima carta chegar ao destino correto?b) Qual é a probabilidade de pelo menos uma carta chegar ao destino correto?
	c) O que ocorre com a probabilidade em (b) se $n \to \infty$?
	prob/CP203.TEX
3)	Exames de diagnóstico não são infalíveis, mas deseja-se que tenham probabilidade pequena de erro. Um exame detecta uma certa doença, caso ela exista, com probabilidade 0,9; se a doença não existir, o exame acerta isso com probabilidade de 0,8. Considere que estamos aplicando o teste em uma população com 10% de incidência dessa doença. Para um indivíduo escolhido ao acaso, pergunta-se: a) A probabilidade de ser realmente doente se o exame indicou que era.
	b) Se dois indivíduos forem escolhidos e testados, qual seria a probabilidade de errar um dos diagnósticos?
	c) Suponha que o acerto do exame, nas duas soluções possíveis, tem a mesma probabilidade p . Qual deveria ser o valor de p para que a probabilidade calculada no item (a) seja de 0.9 ?
	prob/CP204.TEX
4)	Suponha que uma impressora de alta velocidade cometa erros segundo um modeo Poisson, com uma taxa de 3 erros por página.
	a) Qual é a probabilidade de encontrar pelo menos 1 erro em uma página escolhida ao acaso?
	b) Se 5 páginas são sorteadas ao acaso e de forma independente, qual é a probabilidade de encontrarmos pelo menos uma página com pelo menos 1 erro por página?
	c) Dentro das condições de (b), considere a variável que conta o número de páginas com pelo menos 1 erro. Você identifica o modelo dessa variável?
	d) Dentro das condições de (b), considere a variável que conta o número de páginas até encontrarmos a segunda página com erro. Você identifica o modelo dessa variável?
_ \	prob/CP221B.TEX
5)	Qual é o valor de k (inteiro) da v.a. X que tem probabilidade máxima, nos seguintes casos: (a) $Bin(n,p)$ (b) $Poisson(\lambda)$
	prob/CP226.TEX
6)	Seja X uma v.a. com Função de Distribuição (FD) F_X . Determine a FD das v.a.'s Y definidas por (a) $-X$, (b) $ X $, (c) X^2 (d) \sqrt{X} e (e) $\ln(1-X)^{-1}$, quando $X \sim U_c(0,1)$

7)	Se 65% da população em uma comunidade é favorável à proposta de aumento nas mensalidades escolares, dê uma aproximação para a probabilidade de que uma amostra aleatória de 100 pessoas desta comunidade irá conter:
	a) pelo menos 50 pessoas favoráveis à proposta;
	b) no máximo 75 pessoas favoráveis à proposta.
	prob/CP75.TEX
8)	Numa certa região a probabilidade de chuva é $\alpha \in (\frac{1}{2},1)$. Um morador da região, acostumado com as variações muito frequentes do clima, afirma que acerta mais que os meteorologistas. Ele costuma jogar sua moeda, que indica chuva com probabilidade $\beta \in (0,1)$. Suponha que são feitas, de forma independente, previsões em três dias.
	a) Discuta o comportamento probabilístico do número de acertos do morador
	b) Supondo α conhecido, qual deve ser β de modo que a probabilidade de três acertos seja máxima?
	c) Um novato na região diz que, pra maximizar o acerto, é melhor dizer que chove todo dia. O que você acha?
	prob/MN02037.TEX

!!!!! Boa prova !!!!!