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On a rainy dayOn a rainy day
• Observe the raindrops 

falling on the pavement. 
Initially the wet regions 
are isolated and we can 
find a dry path. Then after 
some point, the wet 
regions are connected 
and we can find a wet 
path.

• There is a critical density 
where sudden change 
happens.



Phase transitionPhase transition
• In physics, a phase transition is the transformation of a 

thermodynamic system from one phase to another. The 
distinguishing characteristic of a phase transition is an 
abrupt sudden change in one or more physical properties, in 
particular the heat capacity, with a small change in a 
thermodynamic variable such as the temperature. 

• Solid, liquid, and gaseous phases.
• Different magnetic properties.
• Superconductivity of medals.

• This generally stems from the interactions of an extremely 
large number of particles in a system, and does not appear in 
systems that are too small.



Bond PercolationBond Percolation
• An infinite grid Z2, with each link to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.25



Bond PercolationBond Percolation
• An infinite grid Z2, with each link to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.75



Bond PercolationBond Percolation
• An infinite grid Z2, with each link to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.49

No path from 
left to right



Bond PercolationBond Percolation
• An infinite grid Z2, with each link to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.51

There is a path 
from left to 
right!



Bond PercolationBond Percolation
• There is a critical threshold p=0.5. 

The probability 
that there is a 
“bridge” cluster 
that spans from 
left to right.



Bond PercolationBond Percolation
• There is a critical threshold p=0.5.
• When p>0.5, there is a unique infinite size cluster almost 

always.
• When p<0.5, there is no infinitely size cluster. 
• When p=0.5, the critical value, there is no infinite cluster.

• Percolation theory studies the phase transition in random 
structures. 



Main problems in percolationMain problems in percolation
• What is the critical threshold for the appearance of some 

property, e.g., an infinite cluster?

• What is the behavior below the threshold? We know all 
clusters are finite. How large are they? Distribution of the 
cluster size?

• What is the behavior above the threshold? We know there 
exists an infinite cluster? Is it unique? What is the asymptotic
size with respect to p and n (the network size)?

• What is the behavior at the threshold? Is there an infinite 
cluster or not? What is the size of the clusters?



Examples of PercolationExamples of Percolation
• Spread of epidemics, virus infection on the Internet.

– Each “sick” node has probability p to infect a neighbor node.
– Denote by p the contagious parameter. If p is above the 

percolation threshold, then the disease will spread world wide.
– The real model is more complicated, taking into account the time

variation, healing rate, etc.

• Gossip-based routing, content distribution in P2P 
network, software upgrade.

– The graph is important in deciding the critical value. 
– An interesting result is about the “scale-free” graphs (also called 

power-law) that model the topology of the Internet or social 
network: in one of such models (random attachment with 
preferential rule), the percolation threshold vanishes.



More examplesMore examples
• Connectivity of unreliable networks. 

– Each edge goes down randomly. 
– Is there a path between any two nodes, with high probability?
– Resilience or fault tolerance of a network to random failures.

• Random geometric graph, density of wireless nodes (or, 
critical communication range).

– Wireless nodes with Poisson distribution in the plane.
– Nodes within distance r are connected by an edge.
– There is a critical threshold on the density (or the communication 

range) such that the graph has an infinitely large connected 
component.



Bond percolationBond percolation
• A grid Zd, each edge appears with probability p.

• C(x): the cluster containing the grid node x. 
• By symmetry, the shape of C(x) has the same distribution as 

the shape of C(0), where 0 is the origin.

• θ(p): the probability that C(0) has infinite size.
• Clearly, when p=0, θ(p)=0, when p=1, θ(p)=1.

• Percolation theory: there exists a threshold pc(d) such that
– θ(p)>0, if p> pc(d);
– θ(p)=0, if p< pc(d).



Bond percolationBond percolation
• This is people’s belief on the percolation probability θ(p), It is 

known that θ(p) is a continuous function of p except possibly 
at the critical probability. However, the possibility of a jump at 
the critical probability has not been ruled out when 3 ≤ d < 19. 



An easy case:1DAn easy case:1D
• 1D case: a line. Each edge has probability p to be turned on. 

• If p<1, there are infinitely many missing edges to the left and 
to the right of the origin. Thus θ(p)=0.

• The threshold pc(1) =1.

• For general d-dimensional grid Zd, it can be embedded in the 
(d+1)-dimensional grid Zd+1.

• Thus if the origin belongs to an infinite cluster in Zd, it also 
belongs to an infinite cluster in Zd+1.

• This means: pc(d+1) ≤ pc(d). In fact it can be proved that 
pc(d+1) < pc(d). 



2d: interesting things start to happen2d: interesting things start to happen

• Theorem: For d ≥ 2, 0 < pc(d) < 1.

• There are 2 phases:
• Subcritical phase, p < pc(d), θ(p)=0, every vertex is almost 

surely in a finite cluster. Thus all the clusters are finite. 
• Supercritical phase, p > pc(d), θ(p)>0, every vertex has a 

strictly positive probability of being in an infinite cluster. Thus 
there is almost surely at least one infinite cluster. 

• At the critical point: this is the most interesting part. Lots of 
unknowns.

• For d=2 or d ≥ 19, there is no infinite cluster. The problem for 
the other dimensions is still open. 



Critical threshold Critical threshold ppcc(d)(d)

• We’ve seen that pc(1) =1, pc(2) = ½.  
• The proof for pc(2) is non-trivial. 
• In fact, the critical values for many percolation processes, 

even for many regular networks are only approximated by 
computer simulation. 

• We will prove an upper and lower bound for pc(2). 

• λ(d): the connective constant.
• σ(n): the number of paths starting from origin with length n.



Critical threshold Critical threshold ppcc(d)(d)

• λ(d): the connective constant.
• σ(n): the number of paths starting from origin with length n.

• The exact value of λ(d) is unknown for d ≥ 2. But there is an 
easy upper bound λ(d) ≤ 2d-1. 

– For a path with length n, the first step has 2d choices.
– The ith step has 2d-1 choices (avoid the current position).
– So σ(n) ≤ 2d (2d-1)n-1 .



Lower bound on Lower bound on ppcc(2)(2)

• Prove pc(2)>0. In fact we prove pc(2) ≥ 1/λ(d). 

• We show that when p is sufficiently small, all the clusters are 
finite, I.e., θ(p)=0. 

• σ(n): the number of paths starting from origin with length n.
• N(n): the number of length-n paths that appear.

• Look at a particular path, it appears with probability pn.
• The expectation of N(n) is E(N(n)) = pn σ(n).
• If there is an infinite size cluster, then there exists paths of

length n for all n starting from the origin.



Lower bound on Lower bound on ppcc(2)(2)

• The expectation of N(n) is E(N(n)) = pn σ(n).
• If there is an infinite size cluster, then there exists paths of

length n for all n starting from the origin.

• θ(p) ≤ Prob { N(n) ≥ 1 for all n } ≤ E(N(n)) = pn σ(n).
• Remember that σ(n)=(λ(d)+o(1))n as n goes to infinity.

• θ(p) ≤ (pλ(d) + o(1))n.
• Thus θ(p) = 0 if pλ(d)<1, I.e., p <1/λ(d).



Upper bound on Upper bound on ppcc(2)(2)

• Prove pc(2)<1. 
• We show that θ(p)=1 when p is sufficiently close to 1. 
• We use planar duality of a graph.
• For a planar graph (e.g., the grid), map faces to vertices and 

vertices to faces.  The dual of an infinite grid is also a grid.

Primal vertex

Dual vertex



Upper bound on Upper bound on ppcc(2)(2)

• There is a 1-1 mapping of a primal edge with a dual edge.
• Self-duality: If a primal edge appears (is open), then the dual 

edge appears (is open).
• The dual lattice {x+(½, ½): x ∈ Z2}.

Primal edge

Dual edge
o

(½, ½)



Upper bound on Upper bound on ppcc(2)(2)

• Suppose the origin is in a finite cluster. Then it is surrounded
by a cycle in the dual graph that prevents the origin to reach 
the infinity. 

• Now we count the number of closed circuits in the dual that 
encloses the origin.

Finite cluster

Boundary



Upper bound on Upper bound on ppcc(2)(2)

• ρ(n): the number of length-n closed circuits in the dual that 
encloses the origin.

• Each circuit γ passes through a point (k+½, ½), 0≤k<n.
• Thus this circuit contains a self-avoiding walk of length n-1 

starting from a vertex (k+½, ½) for some 0≤k<n.

Finite cluster

Boundary



Upper bound on Upper bound on ppcc(2)(2)

• ρ(n): the number of length-n closed circuits in the dual that 
encloses the origin.

• ρ(n) ≤ nσ(n-1), where σ(n-1) is the # paths of length n-1.
• Thus the total number of such closed circuits, M(n), having 

length n is 

• Where q=1-p, we choose qλ(d)<1.



Upper bound on Upper bound on ppcc(2)(2)

• We find 0<π<1 such that 

• Thus

• This proves p(2)< π<1.



Site PercolationSite Percolation
• An infinite grid Z2, with each vertex to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.3



Site PercolationSite Percolation
• An infinite grid Z2, with each vertex to be “open” (appear) with 

probability p independently. Now we study the connectivity of 
this random graph.

p=0.80



Site PercolationSite Percolation
• Percolation threshold is still unknown. Simulation shows it’s 

around 0.59. (note this is larger than bond percolation)

p=0.58



Site PercolationSite Percolation
• Site percolation is a generalization of bond percolation.
• Every bond percolation can be represented by a site 

percolation, but not the other way around.

• Percolation in an infinite connected graph G(V, E).
• Bond percolation: each edge appears with probability p.
• Site percolation: each vertex appears with probability p.

• Denote an arbitrary node as origin, study the cluster 
containing the origin.

• The percolation threshold of site percolation is always larger
than bond percolation.



Continuum PercolationContinuum Percolation

• Random plane network, by Gilbert, in J. SIAM 1961.

• Pick points from the plane by a Poisson process with density 
λ points per unit area. 

• Join each pair of points if they are at distance less than r.

• Equivalently,
• In the unit square [0, 1] by [0, 1], throw n points uniformly 

randomly. 
• Connect two nodes with distance less than r.

• This graph is denoted as G(n, r).



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 



Random geometric graph Random geometric graph 

• Percolation behavior:
• Given G(n, r), and a desired property (e.g., connectivity), we 

want to find the smallest radius rQ(n) such that Q holds with 
high probability.

• Gupta and Kumar proved:
• Connectivity: if πrn2 =(logn+cn)/n. 
• As cn goes to infinity, the graph is almost surely connected.
• As cn goes to –infinity, the graph is almost surely 

disconnected.



Random geometric graph v.s. Random geometric graph v.s. 
random graphrandom graph

• Erdos-Renyi model of random graphs (Bernoulli random 
graphs): each pair of vertices is connected by an edge with 
probability p.

• Random geometric graph: the probability is dependent on the 
distance.

• One of the main question in random graph theory is to 
determine when a given property is likely to appear.

– Connectivity.
– Chromatic number.
– Matching.
– Hamiltonian cycle, etc.



Random geometric graph v.s. Random geometric graph v.s. 
random graphrandom graph

• Erdos-Renyi model of random graphs (Bernoulli random 
graphs): each pair of vertices is connected by an edge with 
probability p.

• Friedgut and Kalai in 1996 proved that all monotone graph 
properties have a sharp threshold in Bernoulli random graphs.

• Monotone graph property P: more edges do not hurt the 
property.

• This is also true in random geometric graphs. Proved by 
Ashish Goel, Sanatan Rai and Bhaskar Krishnamachari, in 
STOC 2004. 



Percolation in the real world? Percolation in the real world? 

• Communication range is not a perfect disk.



Percolation with noisy links Percolation with noisy links 

• Each pair of nodes is connected according to some 
(probabilistic) function of their (random) positions.

• A pair of points (i, j) is connected with probability g(xi -xj), 
where g is a general function that depends only on the 
distance.

• In order to keep the average degree the same, fix the 
effective area

• The average degree = λ e(g).



Percolation with noisy links Percolation with noisy links 

• Percolation threshold

• Question: what is the relationship between the percolation 
threshold and the function g? 



Percolation with noisy links Percolation with noisy links 

• Question: what is the relationship between the percolation 
threshold and the function g? 

• Each node is connected to the same number of edges on 
average. So whom should the node be connected to, in order 
to have a small percolation threshold?

• Which distribution has the best graph connectivity?

• Should I use reliable short links? Or unreliable long links? Or 
something more complex, say an annulus? 



Squashing Squashing 

• Probabilities are reduced by a factor of p, but the function is 
spatially stretched to maintain the same effective area (e.g., 
the same average degree). 



Squashing Squashing 

• Probabilities are reduced by a factor of p, but the function is 
spatially stretched to maintain the same effective area (e.g., 
the same average degree). 

• Theorem: 

• It’s beneficial for the connectivity to use long unreliable links!
• If the effective area is spread out, then the threshold density 

goes to 1.
• Question: what makes the difference? The guess is the 

existence of long links.



Shifting and squeezingShifting and squeezing

• Shift the function g outward by a distance s, but squeeze the 
function after that, so that it has the same effective area.

• Goal: use long links.



Shifting and squeezingShifting and squeezing

• Yes it helps percolation! The density threshold goes down. 



Connections to points in an annulusConnections to points in an annulus

• Points are distributed in the plane by a Poisson process with 
density λ.  Each node is connected to all the nodes inside an 
annulus A(r) with inner radius r and area 1. 

• Theorem: for any critical density λ, one can find a r such that 
any density above the threshold percolates.



Connection to smallConnection to small--world modelsworld models

• Kleinberg’s model, preferential attachment, etc.

• For grid points, connect two nodes I, j with probability c/d(I, j), 
where c is a normalization factor. 

• Study the property of this network.



Final projectFinal project

• The final project report is due Dec 22. 

• You are welcome to drop by my office for discussions and 
ideas.


