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Abstract 

We propose the Weibull negative binomial distribution that is a quite 
flexible model to analyze positive data, and includes as special sub-
models the Weibull, Weibull Poisson and Weibull geometric distributions. 
Some of its structural properties follow from the fact that its density 
function can be expressed as a mixture of Weibull densities. We provide 
explicit expressions for moments, generating function, mean deviations, 
Bonferroni and Lorenz curves, quantile function, reliability and entropy. 
The density of the Weibull negative binomial order statistics can be 
expressed in terms of an infinite linear combination of Weibull densities. 
We obtain two alternative expressions for the moments of order statistics. 
The method of maximum likelihood is investigated for estimating the 
model parameters and the observed information matrix is calculated. We 
propose a new regression model based on the logarithm of the new 
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distribution. The usefulness of the new models is illustrated in three 
applications to real data. 

1. Introduction 

The Weibull distribution is a very popular model that has extensively been used 
over the past decades for analyzing data in survival analysis, reliability engineering 
and failure analysis, industrial engineering to represent manufacturing and delivery 
times, extreme value theory, weather forecasting to describe wind speed 
distributions, wireless communications and insurance to predict the size of 
reinsurance claims. In hydrology, it is applied to extreme events such as annually 
maximum one-day rainfalls and river discharges. The need for extended forms of the 
Weibull distribution arises in many applied areas but the emergence of such 
extensions in the statistics literature is only very recent. Following an idea due to 
Adamidis and Loukas [1] for a mixing procedure of distributions, we define the 
Weibull negative binomial (WNB) distribution and study several of its mathematical 
properties. The Weibull distribution represents only a special sub-model of the new 
distribution. 

Let ZWW ...,,1  be a random sample from a Weibull density function with scale 

parameter 0>a  and shape parameter ,0>b  namely ( )
bab

ba eabg ω−−ω=ω 1
,  

( ).0for >ω  We assume that the random variable Z has a zero truncated negative 

binomial distribution with probability mass function 

( ) [( ) ] +
−− ∈∈−β−⎟

⎠
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⎜
⎝
⎛ −+

β=β RsNz
z
zs

szP sz ,,11
1

,; 1  

and ( ).1,0∈β  Here Z and W are assumed independent random variables. Let =X  

( )....,,min 1 ZWW  Then ( )
bazxb eabzxbazxf −−=| 1,;  and the marginal probability 

density function (pdf) of X with four parameters reduces to 

( )
[( ) ]

( ) ( ) ( ),1,0,0,,1
11

; 11 ∈β>β−
−β−

β=θ +−−−−
− sxeexabsxf saxaxb

s
bb

 (1) 

where ( ).,,, β= sbaθ  In the sequel, (1) is refereed to as the WNB density function 

which is customary for such names to be given to models arising via the operation of 
compounding (mixing) distributions. 
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By integrating (1) leads to its cumulative distribution function (cdf) given by 

 ( ) [( ) ( ) ]
[( ) ]

.0,
11

11; >
−β−

β−−β−
=θ −

−−−
xexF s

saxs b

 (2) 

The hazard rate function corresponding to (2) is 
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−β−

β−β
=θτ

−−
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sax

saxaxb

b

bb

e

eseabxx  (3) 

 
 (a) (b) 

Figure 1. Plots of the WNB density for some parameter values. 

 
 (a) (b) 

Figure 2. Plots of the WNB hazard rate function for some parameter values. 
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If X is a random variable with density function (1), then we write ~X  
( ).,,,WNB βsba  It extends several distributions previously considered in the 

literature and we study some structural properties of (1). In fact, the Weibull 
distribution with parameters a and b is clearly a special sub-model when 1=s  and 

.0→β  For 1=s  and 1=b  in addition to ,0→β  it yields the exponential 

distribution. The WNB distribution also contains the exponential Poisson (EP) (Kus 
[11]) and Weibull Poisson (WP) distributions (Bereta et al. [5]) as sub-models when 

,sλ=β  ∞→s  and, in the second case, in addition to .1=b  For ,1=s  equation 

(1) reduces to the Weibull geometric (WG) density function (Barreto-Souza et al. 
[4]). In Figure 1, we plot the WNB density for selected parameter values. For all 
values of the parameters, the density function (1) tends to zero as .∞→x  In Figure 
2, we plot the WNB hazard rate function for selected parameter values, showing its 
flexibility. The WNB density can widely be applied in many areas of engineering 
and biology. 

The rest of the paper is organized as follows: In Section 2, we demonstrate that 
the WNB density function can be expressed as a mixture of Weibull densities. This 
result is important to provide some mathematical properties of the new model 
directly from those properties of the Weibull distribution. A range of mathematical 
properties is considered in Sections 3 to 6. These include moments, skewness and 
kurtosis, quantile function, generating function, mean deviations and Bonferroni and 
Lorenz curves. In Section 7, we show that the density of the WNB order statistics is 
a linear combination of Weibull densities. Two explicit expressions for the moments 
of the WNB order statistics are obtained in this section while the reliability and the 
Rényi entropy are derived in Sections 8 and 9, respectively. Maximum likelihood 
estimation and inference are discussed in Section 10. A log-Weibull negative 
binomial regression model is proposed in Section 11. Three applications to real data 
in Section 12 illustrate the importance of the new models. Concluding remarks are 
addressed in Section 13. 

2. Expansion for the Density Function 

Equations (1) and (2) are straightforward to compute using any statistical 
software. However, we obtain expansions for ( )xf  and ( )xF  in terms of an infinite 

weighted sum of cdf’s and pdf’s of Weibull distributions, respectively. Using the 
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Lagrange expansion (Consul and Famoye [7, Section 1.2.6]) for ( ) ( ),1 1+−−β− saxb
e  
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equation (1) can be further expanded as 
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Hence 
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where 
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and ( ) ( )xg bka ,1+  is the Weibull density function with scale parameter ( )1+ka  and 

shape parameter b. Clearly, ∑∞
=

=ω0 .1k k  

Equation (5) reveals that the WNB density function is a mixture of Weibull 
densities that holds for any parameter values. This result is important to obtain some 
of its mathematical properties from those of the Weibull distribution. The formulas 
related with the WNB distribution turn out manageable, as it is shown in the rest of 
this paper, and with the use of modern computer resources with analytic and 
numerical capabilities, may turn into adequate tools comprising the arsenal of 
applied statisticians. Elementary integration of (5) gives the WNB cumulative 
distribution 

 ( ) ( ) ( )∑
∞

=
+ω=θ

0
,1 ,;

k
bkak xGxF  (7) 

where ( ) ( ) ( ) bxka
bka exG 1

,1 1 +−
+ −=  denotes the Weibull cumulative function with 

scale parameter ( )1+ka  and shape parameter b. 
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3. Moments 

From now on, let ( ).,,,WNB~ βsbaX  The ordinary, central, inverse and 

factorial moments of the WNB distribution can be obtained from an infinite 
weighted linear combination of those quantities for Weibull distributions. For 
example, the sth moment of the Weibull distribution with parameters a and b is 

( ),1+Γ=τ′ − bsa bs
s  where ( ) ∫

∞ −−α=αΓ
0

1 dwew w  is the gamma function. The 

sth generalized moment of the WNB distribution immediately comes from (5) as 

 ( ) ( )
( )[ ]∑

∞

= +

+Γ
ω==μ′
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.

1
1

k
bsk

s
s

ka
bsXE  (8) 

Various closed form expressions can be obtained from (8) as particular cases. 
The central moments ( )sμ  and the cumulants ( )sκ  of X are easily obtained from the 

ordinary moments by 
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respectively. Here ,11 μ′=κ  ,2
122 μ′−μ′=κ  ,23 3

11233 μ′+μ′μ′−μ′=κ  −μ′=κ 44  

,61234 4
1

2
12

2
213 μ′−μ′μ′+μ′−μ′μ′  etc., respectively. The skewness and kurtosis 

measures can be obtained from the classical relationships involving cumulants: 

Skewness ( ) 23
23 κκ=X  and Kurtosis ( ) ,2

24 κκ=X  namely, 

Skewness ( ) ( ) ( ) ( ) ( )
( )X

XEXEXEXEX 23

323

Var
23 +−=  

and 

Kurtosis ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

.
Var

364
2

42234

X
XEXEXEXEXEXEX −+−=  

Plots of the skewness and kurtosis of X as functions of s and β are given in 
Figures 3 and 4. Both skewness and kurtosis increase with s for fixed β and increase 
with β for fixed s. 
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Finally, the nth descending factorial moment of X is given by 

[ ( ) ] ( ) ( ) ( )[ ] ( )∑ =
μ′=+−−−=

n

r r
n rnsnXXXXEXE

0
,,121  

where ( ) ( ) [ ( ) ] 0
1!, =
−= x

nr xDrrns  are the Stirling numbers of the first kind. The 

WNB factorial moments are obtained from (8). 

 
 (a) (b) 

Figure 3. The WNB skewness ( )4.1and3.0for == ba  as function of s (for fixed 

β) and as function of β (for fixed s). 

 
 (a) (b) 

Figure 4. The WNB kurtosis ( )4.1and3.0for == ba  as function of s (for fixed 

β) and as function of β (for fixed s). 
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4. Quantile Measures 

The WNB quantile function corresponds to the inverse of (2) given by 

( ) ( ) { [ ( {[ ( ) ] ( ) } )] } .1111log; 11111 basss uuFuQ −−−−−− β−+β−−−β=θ=  (9) 

Then using (9), simulation from the WNB random variate is straightforward by 

{ [ ( {[ ( ) ] ( ) } )] } ,1111log 1111 basss VX −−−−− β−+β−−−β=  

where V is a uniformly distributed random variable over the interval (0, 1). We 
develop a script using the software R (R Development Core Team, 2008) to simulate 
X in Appendix A. 

 
 (a) (b) 

Figure 5. The Bowley skewness of the WNB distribution ( )4.1and3.0for == ba  

as function of s (for fixed β) and as function of β (for fixed s). 

We now compute quantile measures for the skewness and kurtosis. The Bowley 
skewness (Kenney and Keeping [9]) is based on quartiles 

 ( ) ( ) ( )
( ) ( ) ,41Q43Q

41Q21Q243Q
−

+−
=B  (10) 

and the Moors kurtosis (Moors [13]) is based on octiles 

 ( ) ( ) ( ) ( )
( ) ( ) ,8286

81838587
QQ

QQQQM
−

−+−
=  (11) 

where ( )uQ  is calculated from (9). These measures are less sensitive to outliers and 
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they exist even for distributions without moments. Plots of (10) and (11) for selected 
parameter values are given in Figures 5 and 6, respectively. For fixed β, when s 
increases, the Bowley skewness and the Moors kurtosis first increase to a maximum 
and then decrease. The behavior of both measures when β increases depend upon the 
value fixed for s. 

 
 (a) (b) 

Figure 6. The Moors kurtosis of the WNB distribution ( )4.1and3.0for == ba  as 

function of s (for fixed β) and as function of β (for fixed s). 

5. Moment Generating Function 

The moment generating function (mgf) ( ) ( )[ ]tXEtM exp=  follows from the 

power series expansion for the exponential function and (8), 

( ) ( )
( )[ ]∑

∞

= +

ω+Γ
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.
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1

ks

s
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k t
ska

bstM  

Now, we derive two explicit expressions for ( )tM  using Meijer G-function and 

Wright generalized hypergeometric function. Let [( ) ].11 −β−β= −sabsA  First, 
we have 

( ) ( ) ( ) [ ( )] ( )∫
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From the Meijer G-function defined by 
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and the result ( ){ } ( ( ) )−|=− 0
0,1
1,0exp xgGxg  for ( )⋅g  an arbitrary function, we can 

write 
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If we assume that ,qpb =  where 1≥p  and 1≥q  are co-prime integers, then 
equation (2.24.1.1) in Prudnikov et al. [15, Volume 3] yields 
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From (12) and the last two equations, we obtain 
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The condition qpb =  in (13) is not restrictive, since every real number can be 
approximated by a rational number. 

A second representation for the integral M can be obtained using the Wright 
generalized hypergeometric function given by 
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We assert that 
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provided that .1>b  Combining (12) and (14), we obtain the second representation 
for ( )tM  
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provided that .1>b  Clearly, special formulas for the mgf of the Weibull, WG and 
WP distributions can readily be determined from equations (13) and (15) by 
substitution of known parameters. 

6. Mean Deviations 

The mean deviations about the mean ( ) ( )( )11 μ′−=δ XEX  and about the 

median ( ) ( )( )mXEX −=δ2  can be written as 

 ( ) ( ) ( )1111 22 μ′−μ′μ′=δ TFX    and   ( ) ( ),212 mTX −μ′=δ  (16) 

respectively, where ( )XE=μ′1  is given by (8), ( )1μ′F  comes from (2), =m  
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Then the mean deviations can be calculated from (17). Further, we can obtain 
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Bonferroni and Lorenz curves from (17). These curves have applications in 
economics, reliability, demography, insurance and medicine and are defined by 
( ) ( ) ( )1μ′= pqTpB  and ( ) ( ) ,1μ′= qTpL  respectively, where ( )pq Q=  is calculated 

by (9) for a given probability p. 

7. Order Statistics 

The density function ( )xf ni:  of the ith order statistic for ni ...,,1=  

corresponding to the random variables nXX ...,,1  following the WNB distribution, 

can be written as 
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where ( )xf  is the pdf (1), ( )xF  is the cdf (2) and ( ) ( ) ( ) ( )[ ]bababaB ΓΓ+Γ=,  

is the beta function. Setting ( ),exp baxu −=  we can write from (5) and (7), 
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We use throughout an equation of Gradshteyn and Ryzhik [8, Section 0.314] for 
a power series raised to a positive integer j, 
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whose coefficients ijc ,  ( )...,2,1for =i  are easily obtained from the recurrence 

equation 
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where .00,
j

j ac =  Hence, the coefficients ijc ,  come directly from 1,0, ...,, −ijj cc  
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and, therefore, from ....,,0 iaa  Using (18), it follows that 
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Here the constants kijnc ,−+  are determined from equations (6) and (19) as 
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Setting ( )kijnmajmk +−+++=δ 1,,  in the above expression, we obtain 
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Equation (20) shows that the density function of the WNB order statistics can be 
expressed as an infinite weighted linear combination of Weibull densities. We can 
derive some mathematical measures of the WNB order statistics directly from those 
quantities of the Weibull distribution. 
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Using the linear combination representation (20), the moments of the WNB 
order statistics can be written directly in terms of the Weibull moments as 

 ( ) ( ) ( )∑ ∑
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where jmk ,,δ  and ( )jmk ,,η  are given in Section 7. 

Alternatively, we obtain another closed form expression for these moments 
using a result due to Barakat and Abdelkader [3] applied to the independent and 
identically distributed (i.i.d.) case 
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From equation (22), we have 
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We can compute the moments of the WNB order statistics by three different 
ways: (i) from equation (21) that involves two infinite sums and one finite sum but 
no complicated function; (ii) from equation (23) that involves only two sums, one 
infinite and other finite; or (iii) by direct numerical integration. The moments of the 
WNB order statistics listed in Table 1 are in agreement using the three methods. 

Table 1. Moments of the WNB order statistics for 8.0,2,4,5 =β=== ban  and 

3=s  

Order statistic 5:1X  5:2X  5:3X  5:4X  5:5X  

1=r  0.294022 0.481234 0.674377 0.930862 1.451229 

2=r  0.112577 0.269695 0.513943 0.982929 2.558717 

3=r  0.052002 0.172134 0.439308 1.182069 5.581500 

4=r  0.027881 0.123392 0.419637 1.631341 15.08906 

Variance 0.026128 0.038109 0.059160 0.116426 0.452652 

Skewness 0.837768 0.762007 0.898139 1.267313 1.820482 

Kurtosis 3.945583 4.059123 4.717588 6.474108 8.371872 

8. Reliability 

Here we derive the reliability ( )12 XXPrR <=  when 1X  and 2X  have 

independent WNB ( )111 ,,, βsba  and WNB ( )222 ,,, βsba  distributions with the 

same shape parameter b. The density of 1X  and the cdf of 2X  are obtained from 

equations (5) and (7) as 
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where ( )b
ii xau −= exp  for 2,1=i  and the constants r1ω  and j2ω  are given by 

(8) with the corresponding parameters of the distributions of 1X  and ,2X  

respectively. We have 
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and then 
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By the application of ( )∫
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9. Entropy 

The entropy of a random variable X with density ( )xf  is a measure of variation 

of the uncertainty. Rényi entropy is defined by 
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where ( )xf  is the pdf of X, 0>ρ  and .1≠ρ  For a random variable X with a 

WNB distribution, we have 
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Using the Lagrange expansion (4) in the last equation, we obtain 
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Substituting (26) and (27) into (25), we can write 
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10. Estimation and Inference 

Here we consider the estimation of the model parameters of the WNB 
distribution by the method of maximum likelihood. Suppose nXX ...,,1  is a random 

sample from (1) and ( )Tsba β= ,,,θ  is the parameter vector. The log-likelihood 

(LL) function, say ( ){ }β= ,,,loglog sbaLL  for the four parameters is 
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It follows that the maximum likelihood estimators (MLEs) are the simultaneous 
solutions of the equations: 
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For interval estimation and hypothesis tests of the model parameters, we require 
the information matrix. The 44 ×  observed information matrix is 

( ) { } ,,,,,,, β=κ== sbajijiθKK  

whose elements are given in Appendix B. Under conditions that are fulfilled for the 
parameter θ in the interior of the parameter space but not on the boundary, the 

asymptotic distribution of ( )θθ −ˆ  is ( ( ) ).,0 1
4

−θKN  We can use the asymptotic 

multivariate normal ( ( ) )11
4 ,0 −− θKnN  distribution of θ̂  to construct approximate 

confidence regions for some parameters and for the hazard and survival functions. In 
fact, a ( )γ−1100  asymptotic confidence interval for each parameter iθ  is given by 

( )( ) ( ),ˆˆ,ˆˆ1,AIC ,
2

,
2

iiii zz iii
θθ

γ
θθ

γ κ+θκ−θ=γ−θ  

where ii θθκ ,ˆ  represents the ( )ii,  diagonal element of ( ) 11 −− θKn  for 4,3,2,1=i  

and 2γz  is the quantile 21 γ−  of the standard normal distribution. 

The asymptotic normality is also useful for testing goodness of fit of the WNB 
distribution and for comparing this distribution with some of its special sub-models 

using likelihood ratio (LR) statistics. We consider the partition ( ),, 21
TT θθθ =  where 

1θ  is a subset of parameters of interest of the WNB distribution and 2θ  is a subset 

of the remaining parameters. The LR statistic for testing the null hypothesis 
( )0
110 : θθ =H  versus the alternative hypothesis ( )0

111 : θθ ≠H  is given by =ω  

{ ( },~ˆ2 )θθ −l  where θ~  and θ̂  denote the MLEs under the null and alternative 

hypotheses, respectively. The statistic ω is asymptotically ( )∞→n as  distributed as 

,2
kχ  where k is the dimension of the subset 1θ  of interest. For example, we can 

compare the WG model against the WNB model by testing 1:0 =sH  versus 

.1:1 ≠sH  
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11. The log-Weibull Negative Binomial Model 

Let X be a random variable having the WNB density function (1). The random 
variable ( )XY log=  has a log-Weibull negative binomial (LWNB) distribution, 

whose density function (parameterized in terms of ,ba λ=  1−=σ b  and =μ  

( ))λ− log  is 
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where 0, >σ∞<<−∞ y  and .∞<μ<−∞  We refer to (29) as the (new) LWNB 

distribution, say ( ),,,,LWNB~ μσβsY  where μ is the location parameter, σ is the 

dispersion parameter and s and β are shape parameters. So 

if ( ),,,,WNB~ basX β  then ( ) ( ).,,,LWNB~log μσβ= sTY  

The plots of (29) in Figure 7 for selected parameter values show great flexibility 
of the density function in terms of the shape parameters a and b. The survival 
function corresponding to (29) becomes 
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 (a) (b) (c) 

Figure 7. Plots of the LWNB density for some parameter values: (a) ,1,0 =σ=μ  
(b) 1,0 =σ=μ  and (c) .0=μ  
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We define the standardized random variable ( ) σμ−= YZ  with density 

function 
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The special case 1=s  corresponds to the (new) log-Weibull geometric (LWG) 
distribution. 

The kth ordinary moment of the standardized distribution (31) is given by 
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By expanding the binomial term and setting ( ),exp zx =  we obtain 
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The above integral can be calculated from Prudnikov et al. [15, Volume 1, equation 
2.6.21.1] as 
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In many practical applications, the lifetimes are affected by explanatory 
variables such as the cholesterol level, blood pressure, weight and several others. 
Parametric regression models to estimate univariate survival functions for censored 
data are widely used. A parametric model that provides a good fit to lifetime data 
tends to yield more precise estimates of the quantities of interest. Based on the 
LWNB density function, we propose a linear location-scale regression model for 
censored data linking the response variable iy  and the explanatory variable vector 
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( )ipi
T
i vv ...,,1=v  as follows: 

 ,...,,1, nizy i
T
ii =σ+= γv  (32) 

where the random error iz  has density function (31), ( ) ,...,,1
T

pγγ=γ  ,0>σ  

0>a  and 0>b  are unknown parameters. The parameter γvT
ii =μ  is the location 

of .iy  The location parameter vector ( )Tnμμ= ...,,1μ  is represented by a linear 

model ,Vγμ =  where ( )TnvvV ...,,1=  is a known model matrix. The LWNB 

regression model (32) opens new possibilities for fitting many different types of 
censored data. It is an extension of an accelerated failure time model using the WNB 
distribution for censored data. 

Consider a sample ( ) ( )nnyy vv ,...,,, 11  of n independent observations, where 

each random response is defined by ( ) ( ){ }.log,logmin iii cxy =  We assume non-

informative censoring such that the observed lifetimes and censoring times are 
independent. Let F and C be the sets of individuals for which iy  is the log-lifetime 

or log-censoring, respectively. Conventional likelihood estimation techniques can be 
applied here. The log-likelihood function for the vector of parameters ( ,, β= sτ  

)TTγ,σ  from model (32) has the form ( ) ( ) ( )( )∑ ∑
∈ ∈

+=
Fi Ci

c
ii lll ,τττ  where ( ) =τil  

( )[ ] ( )( ) ( )[ ] ( )iiii
c

iii yfySlyf vvτv ||=| ,log,log  is the density (29) and ( )iiyS v|  
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where ( ) σ−= γvT
iii yz  and r is the number of uncensored observations (failures). 
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The MLE τ̂  of the vector of unknown parameters can be calculated by maximizing 
the log-likelihood (33). We use the subroutine NLMixed in SAS to obtain .τ̂  Initial 
values for β, σ and γ  are taken from the fit of the LWG regression model with 

.1=s  The fit of the LWNB model yields the estimated survival function for iy  

given by 

 ( ) ( ) [ ( ){ }]
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where ( ) .ˆˆˆ σ−= γvT
iii yz  

The asymptotic distribution of ( )ττ −ˆ  is multivariate normal ( ( ) ),,0 1
3

−
+ τKN p  

where ( )τK  is the information matrix. The asymptotic covariance matrix ( ) 1−τK  of 

τ̂  can be approximated by the inverse of the ( ) ( )33 +×+ pp  observed information 

matrix ( ).τL−  The approximate multivariate normal distribution ( ( ) )1
3 ,0 −

+ − τLpN  

for τ̂  can be used in the classical way to construct confidence regions for some 
parameters in .τ  We can use LR statistics for comparing the LWNB model with 
some special sub-models. 

12. Applications 

In this section, we compare the results of fitting the WNB and LWNB 
distributions to three real data sets. 

Clorpirifos data 

A study conducted in Chile by Dra. Fernanda Cavieres (University of 
Valparaíso) established that clorpirifos likely causes congenital malformations, 
which can be avoided by folic acid. The response variable was the fetal height of a 
mouse (in millimeters) (Balakrishnan et al. [2]; and Leiva et al. [12]). We fitted the 
WNB, WG and Weibull distributions to the data using the maximum likelihood 
method for parameter estimation. The computations were performed using the 
subroutine NLMixed in SAS. The convergence was achieved using the re-

parameterization ba λ=  and ( ) ( )[ ]00 exp1exp β+β=β  to guarantee the estimate 

of β in ( ).1,0  
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Table 2. MLEs of the model parameters for the clorpirifos data, the corresponding 
SEs (given in parentheses) and some statistical measures 

Model λ b s 0β  AIC CAIC BIC 

WNB 0.2160 29.8851 0.0975 6.6848 72.0 72.4 82.7 
 (0.0034) (9.3921) (0.1618) (3.4928)    

WG 0.2186 19.2622 2.0752 1 73.4 73.6 81.4 
 (0.0062) (2.0679) - (0.8898)    

Weibull 0.2366 0.0018   79.9 80.0 85.2 
 (0.0018) (0.9562) - -    

Table 2 lists the MLEs (the corresponding standard errors are in parentheses) of 
the parameters from the fitted WNB, WG and Weibull models and the values of the 
following statistics: AIC (Akaike Information Criterion), BIC (Bayesian Information 
Criterion) and CAIC (Consistent Akaike Information Criterion). These results 
indicate that the WNB and WG models have the lowest values for the AIC and BIC 
statistic, respectively, among the fitted models, and therefore they could be chosen 
as the best models. In order to assess if the model is appropriate, we plot in Figure 
8(a) the empirical and estimated survival functions of the WNB, WG and Weibull 
distributions. Figure 8(b) gives the histogram of the data and the fitted WNB, WG 
and Weibull distributions. The plots indicate that the first two distributions provide 
good fits for these data. 

 
 (a) (b) 
Figure 8. (a) Estimated survival function from the fitted WNB, WG and Weibull 
distributions and the empirical survival for clorpirifos data. (b) Estimated densities 
of the WNB, WG and Weibull models for clorpirifos data. 
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Airborne data 

The data representing repair times (in h) for an airborne communication 
transceiver were first analyzed by Von Alven [16] using a two-parameter log-normal 
distribution. These data were reanalyzed by Chhikara and Folks [6] using a two-
parameter inverse Gaussian distribution and by Koutrouvelis et al. [10] using the 
inverse Gaussian distribution with three parameters. We fitted the WNB, WG and 
Weibull distributions to the data using the maximum likelihood method for 
parameter estimation. The computations were performed using the subroutine 
NLMixed in SAS. Table 3 lists the MLEs (the corresponding standard errors are in 
parentheses) of the parameters from the fitted WNB, WG and Weibull models and 
the values of the AIC, BIC and CAIC statistics. These results indicate that the WNB 
model yields the lowest values for these statistics among the fitted models, and then 
it could be chosen as the best model. 

Table 3. MLEs of the model parameters for the airborne data, the corresponding SEs 
(given in parentheses) and the AIC measures 

Model λ b s 0β  AIC CAIC BIC 

WNB 0.0445 3.4176 0.1295 12.9327 201.1 202.1 208.4 

 (0.0131) (1.4064) (0.0951) (6.4066)    

WG 0.0530 1.4669 0  3.3368 203.6 204.2 209.1 

 (0.0468) (0.2084) - (1.6851)    

Weibull 0.2952 0.8896   208.7 209.0 212.3 

 (0.0525) (0.0960) - -    

The LR statistic for testing the hypotheses 1:0 =sH  versus 01 : HH  is not 

true, i.e., to compare the WNB and WG regression models, is { 55.962 −=w  

( )} 50.480.98 =−−  ( ).0339.0value- =p  It indicates that the proposed model is 

superior to the WG model in terms of model fitting. In order to assess if the model is 
appropriate, the empirical and estimated survival functions of the WNB, WG and 
Weibull distributions are plotted in Figure 9(a). In Figure 9(b), we plot the histogram 
of the data and the fitted WNB, WG and Weibull distributions. We conclude that the 
new distribution provides a good fit for these data. 
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 (a) (b) 

Figure 9. (a) Estimated survival function from the fitted WNB, WG and Weibull 
distributions and the empirical survival for airborne data. (b) Estimated densities of 
the WNB, WG and Weibull models for airborne data. 

Multiply censored relay data 

As an application of the LWNB regression model, we consider the data given in 
Table 4 analyzed by Nelson ([14, p. 160]) and concerning to “test data on a 
production relay (thousands of cycles)”. The failure time of observation i, ,ix  was 

defined as the thousands of cycles, and 1iv  denotes the three levels of production 

(16 amps, 26 amps and 28 amps). The objective is to compare the levels of 
production in relation to thousands of cycles. The model considered in the analysis is 
described by 

,110 iii zvy σ+γ+γ=  

where the random variable ( )ii xy log=  follows (29) for .35...,,1=i  

Table 4. Data on a production relay 

Production Thousands of cycles 

16 amps: 38+ 77+ 138 168+ 188 228 252 273 283+ 288 291 299 317 

 374 527 529 559 567 656 873       

26 amps: 103 110 131 219 226+         

28 amps: 84 92 121 138 191 206 254 267 308 313    

The symbol + indicates censoring 
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Table 5 lists the MLEs of the parameters for the LWNB and LWG regression 
models fitted to these data using the NLMixed procedure in SAS. The convergence 
was achieved using the re-parameterization ( ) ( )[ ]00 exp1exp β+β=β  to guarantee 

the estimate of β in ( ).1,0  As initial values for the parameters γ  and σ in the 

iterative maximization process of the log-likelihood function 33, we used the fitted 
values obtained with the log-Weibull regression model. These results indicate that 
the new regression model has the lowest values for the AIC, CAIC and BIC statistics 
among the fitted models, and then it could be chosen as the best model. For the fitted 
LWNB regression model, 1v  is significant at 1% and then there is a significant 

difference among the levels of the production for thousands of cycles. The LR 
statistic for testing the hypotheses 1:0 =sH  versus 01 : HH  is not true, i.e., to 

compare the LWNB and LWG regression models, is { ( )} =−−−= 15.2250.192w  

( )0213.0value-30.5 =p  what indicates that the LWNB regression model is 

superior to the LWG regression model in terms of model fitting. 

Table 5. MLEs of the parameters from the LWNB regression model fitted to the 
relay data, the corresponding SEs (given in parentheses), p-value in [.] and the AIC 
measure 

Model s 0β  σ 0v  1v  AIC CAIC BIC 

LWNB 0.0194 13.1187 0.1124 7.8528 –0.0719 49.0 51.1 56.8 

 (0.00688) (6.8980) (0.0502) (0.2301) (0.0112)    

    [<0.0001] [<0.0001]    

LWG 1 1.3464 0.3257 7.5061 –0.0656 52.3 53.6 58.5 

 - (1.7556) (0.0689) (0.3921) (0.0147)    

    [<0.0001] [<0.0001]    

A graphical comparison between the LWNB and LWG models is given in 
Figures 10(a) and 10(b). These plots provide the empirical survival function and the 
estimated survival functions given by (34). Based on these plots, it is evident that the 
LWNB model fits well to these data. From Figure 10, we note that there is a 
difference of the level 16 for the levels 26 and 28. 
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 (a) (b) 

Figure 10. Estimated survival functions and the empirical survival: (a) LWNB 
regression model versus K-M. (b) LWG regression model versus K-M. 

13. Conclusions 

For the first time, we introduce the Weibull negative binomial (WNB) 
distribution and study some of its structural properties. The new distribution 
generalizes some distributions studied recently in the literature. It is an important 
model for analysis of lifetime data because of the wide usage of the Weibull 
distribution and the fact that the current generalization provides means of its 
continuous extension to still more complex situations. We provide a comprehensive 
description of some structural properties of the proposed distribution with the hope 
that it will attract wider applications in several fields. The WNB density function can 
be expressed as a mixture of Weibull density functions. This result allows us to 
derive some expansions for the ordinary, factorial and inverse moments and moment 
generating function. The density function of the WNB order statistics can be written 
in terms of an infinite linear combination of Weibull density functions. We calculate 
mean deviations, Bonferroni and Lorenz curves, reliability and Rénvi entropy and 
obtain two representations for the moments of order statistics. The estimation of 
parameters is approached by the method of maximum likelihood and the observed 
information matrix is derived. We propose a new regression model based on the 
logarithm of the WNB distribution. The usefulness of the new models is illustrated 
in three real data sets using classical criterion. The proposed models provide a rather 
flexible mechanism for fitting a wide spectrum of positive real data sets. 
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Appendix A 

R script to simulate data from the WNB distribution 

First simulation 

rm(list=ls(all=TRUE)) 

set.seed(45) 

5.0=a  

5.1=b  

1=s  

2.0beta =  

( )1,0,10000runifv −<  

( ( ( ( )) ( ) ))
bs ass betavbetabetax

11 1111111log −− −+∗−−−∗−<  

( )xdensityf −<  

hist(x, freq=FALSE, main=” ”, ylab=”f(x)”, xlab=”x”) 

lines(f, col=”red”) 

Second simulation 

set.seed(45) 

9.0=a  

2=b  

4=s  

3.0beta =  

( )1,0,10000runifv −<  

( ( ( ( )) ( ) ))
bs ass betavbetabetax

11 1111111log −− −+∗−−−∗−<  

( )xdensityf −<  

hist(x, freq=FALSE, main=” ”, ylab=”f(x)”, xlab=”x”) 

lines(f, col=”red”) 
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Appendix B 

The elements of the observed information matrix 
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